PAGE
10
Extreme Programming

Software Engineering

TEXT:
A chapter is assigned from:

Extreme Programming Explored, William C Wake, Addison Wesley, 2002

OBJECTIVES:
The student shall be able to:

 Define and describe the 12 core practices of the XP team: Simple design, Testing, Refactoring, Coding Standards, Collective ownership, Continuous integration, Metaphor, 40-hour workweek, Pair programming, Small releases, On-site customer, Planning game
 Describe how these practices solve software engineering process problems

CONCEPTS:

Introduction

1 hour

Lab: Extreme Programming Project
2 hour

Discussion: XP vs. CMM

1 hour

Total

3 hours

Agile Software Development

Agile Techniques emphasize:
· Customer-Driven: Quality = Customer happiness

· Short Iterations (Rapid Feedback: Customer gets deliveries and provides feedback often

· Embrace Change: Feedback results in change in product, embrace rework
· Evolutionary Modeling: Design just enough to build for release

· Bare Sufficiency, no Excess: Minimize decisions to avoid extraneous work
· Prove with Code: Code delivery best indicator of progress and acceptance
Two techniques:

· Agile Modeling: Explicit modeling

· Extreme Programming: Implicit modeling

Justification for Modeling:

· Attractive to visual thinkers

· Think before coding

· Method of communication

An agile model

· Is just barely good enough

· Fulfills their purpose

· Are understandable to the team

· Are sufficiently accurate, consistent, and detailed

· Are as simple as possible

· Shows incremental change: Just enough to get by, feature-wise
· Can be on whiteboard: Documentation is minimized but may be necessary for future enhancements

Extreme Programming
Customer decides:

 Scope: What the system shall do
 Priority: What features are most important
 Composition of releases
 Dates of releases
Programming team decides:

 Estimated time: Time to add a feature
 Technical consequences: Provides information about technical choices, but customer makes final decision (e.g. selection of database)
 Process: How the team will work
 Detailed schedule: When parts will be completed within an iteration
12 Core Practices:

· Simple design

· Testing

· Refactoring

· Coding Standards

· Collective ownership

· Continuous integration

· Metaphor

· 40-hour workweek

· Pair programming

· Small releases

· On-site customer

· Planning game
Twelve Core Practices of an XP team

Programming:

Simple design

 Spike: A minimal, throw-away code design, assists in deciding on a time estimate or an architecture
 Metaphor: Identifies key classes and interactions
 First Iteration: A functioning skeleton that defines stories for the release
 Zero Feature Release (Ziffer): Release that does nothing but establishes architecture
Testing

 Cycle: Write, compile, run unit test code, code, compile, test program code
 Cycle takes 1-10 minutes: avg. 5

 Write just enough code to make tests pass.
Refactoring: Improve the code design without changing external behavior
 Smelly code: Code that is not clean, overly-complex code, code not adhering to standards, duplicate code, useless or incorrect comments

 Make small, incremental improvements

 Unit tests already exist to verify correct programming

 Result: Simple, flexible code
Coding Standards

 Coding standards may include: indentation, naming standards, use of braces
Team Practices:

Collective Ownership

 The whole team owns code: anyone can change the code
Continuous Integration

 Integration occurs several times per day by one team at any time
 Integration system: Single machine may be dedicated to integration or a token may be used to indicate integration in progress
 When pair finishes a work session they integrate what they have done
 Integration system must be left with 100% working unit tests
Metaphor

 Enables team to agree on an architecture
 Defines the key objects and interactions for the solution
 Defines a common set of names, and interfaces, between classes/systems.
Coding Standards

 Team selects a coding style, and uses it

 Coding standards may include: indentation, naming standards, use of braces
40-hour Work Week
 Eight-hour burn: After working over 8 hours people become less productive

 Two weeks of overtime is a sign of problems
 May include 4 hours of ‘play time’: learning new skills
Pair Programming

 Provides on-the-spot code reviews and team learning

 Typist thinks tactically, partner thinks strategically

 No exceptions to pair-programming rule

 Partners are changed after a number of hours, or at least every day

 Driver is changed a few times an hour or every couple minutes

 Team corrects bad attitudes: disengaged programmers
 Open workspace: Pairs work in open room

 Can hear conversations of other pairs and contribute
Small Releases

 Product in customer hands early: Deliver the agreed-upon stories the customer wants most

 Customer tracks project status

 Programmers learn about problems early and avoid extraneous features

 Whole features released
Processes:

On-Site Customer:

· Customer makes critical decisions about requirements

· Customer writes acceptance tests for each story
· Customer runs acceptance tests
· Customer steers the iteration

· Customer accepts final release

Testing

· Unit Tests: Continual testing during coding
· Integration Tests: Tests written during integration

· Acceptance Tests: Designed by customer

· May be tests on cards or tests in a spreadsheet

· Every day run acceptance tests for all stories to be implemented in iteration

Small Releases
 Iterations: 1-3 weeks

· First day of Iteration: Customer selects stories to implement
· Create task cards (or task whiteboard entries), by splitting story into tasks

· Each task should take <= 3 days

· Create Unclaimed Tasks pile

· Each programmer selects tasks to implement, estimating their duration

· Spikes and previously tracked history may be used to estimate time

· If tasks don’t fit for iteration, customer splits or defers story, or adds in a new story

 Iteration date is fixed: features are dropped if necessary
 Release: 1-3 months

 Celebrate a release, relax before starting next release
Planning Game

 Customer writes the stories on blank cards

· Card Title: Story: <Story Title>

· Card Body: Sentence or short paragraph describing a desired feature

 Programmers estimate time (via spikes)

· Each story is translated into ideal programmer weeks (or story points)

· Programmers may use spike to get better time estimate

· If an estimate > 3 weeks, customer must split story. (Smaller estimates are usually more accurate)

· Ideal programming weeks may translate into 2-3 weeks of effort

 Customer plans releases

· Customer prioritizes stories: high: must-have, medium: should-have, low: could-have

· Programmers define the velocity: how many story points the customer should expect for the fixed duration

· Customer selects stories and release date, based upon given constraints

· Customer can change priorities at any time

Managing XP Projects
Three Roles:

· Project Manager

· Tracker

· Coach

These functions may be fulfilled by one or more people

Manager: Manages people and problem
· Is the external interface to the world

· Forms the team

· Obtains resources: machines, space

Tracker: Tracks whether team is on schedule for deliveries

· Release Plan: Lists stories planned this release and stories deferred.

· Iteration Plan

· Determine number of task points completed and remaining

· Tracks task points implemented per programmer last iteration

· Helps in estimating time for next iteration

· Acceptance Tests

· (Bar) Chart indicates number of tests, and number of tests passed

· Can use spreadsheets for tracking

Coach: Mentors the team in XP processes

· On-site, centered, unflappable, mentor, coach, monitor
· Corrects people who are not following XP process

Meetings:

· Release planning meeting: Select stories

· Iteration planning meeting: Define tasks for iteration

· Daily standup meetings: 10-minute meetings identify problems and who will solve them, defines start of day
· Release/iteration celebrations

Why XP works:

Excellent communication:

· Open workspace

· Customer on-site

· Paired programming

Built-in Validation

· Automated repeatable tests

· Paired programming

Small Iterations

· Multiple integrations per day

· 1-3 week iterations release workable systems

· Releases every few months

Discussion:

How do the 12 core practices solve software engineering process problems, compared to traditional software engineering methodology?

Lab:

Write a questionnaire each, for a customer and a software developer, to determine which each would prefer to work with.

Project:

The timetrack program assists software engineers in tracking the amount of time they spend on various activities. Users edit their activities in the project.inp file. When timetrack is run, timetrack displays the items listed in the project.inp file. At the timetrack user interface, users may select a task:
· Count time against a selected activity: Run a timer on the selected activity. Discontinue timers on other activities. Display amount of time used on activity since timetrack was run.

· Go on break: Keep program open, but do not have an active activity

· Correct time: Adjust time for an activity up or down

· Exit time track: Save times for activities with non-zero times, into the file timeuse.out.

The file project.inp contains a list of activities, with one activity per line.

Example:

 Write Requirements document

 Code and unit test project subsystem

 Develop Acceptance Test Plan

The file is created manually.

The file timeuse.out contains a list of activities preceded by the number of minutes spent on the activity:

Example:

 180 Write Requirements document

 240 Code and unit test project subsystem

 60 Develop Acceptance Test Plan

This file is appended to. So for each time it is opened or closed, the file will get longer.

Rules:

· Pairs Programming: You must program in pairs

· Partner Switching: You must switch partners every class period

· Test-Driven: You must write the test code before the code to implement it.

· 15-Minute Cycles: Test and code occurs in 15 minutes.

· Frequent Integration: At least one integration per pair per class period

· Customer Participation: Customer writes test plan on integration machine. Project acceptance is when all tests pass.
