CS/SE
Project Requirements Specification Assignment
July 12, 2005

The following assignment has been used for several semesters in the Software Engineering course at Saint Michael's College (taken by senior undergraduate Computer Science and Information Systems majors). This assignment can be adapted to any other idea that you have that will be useful for your students and pedagogical intent. This particular assignment places demands on the student with respect to user interface design principles presented in lecture. E.g., limited interface real estate, significant time constraints, etc.

This term we will be continuing the development of a new software product for the Palm IIIc and IIIxe to keep track of statistics during a basketball game. We have contracted with the NCAA and Saint Michael's College to build the system for coaches and administrative assistants who typically attend basketball games in the context of “scouting” one or both teams. We will be using the Metrowerks CodeWarrior IDE for our software development/user interface design (Although C/C++ is the host language for Palm CodeWarrior, we won’t be learning all the details of this IDE. CodeWarrior contains a user interface development feature that is similar to Visual Basic and allows for the construction of an interface without coding any underlying source code. If the IDE is not available, then we will build our own prototypes using simple graphics programs and the Palm skins that are available for download from the Palm web site. These skins may also be copied from the PowerPoint slides from the lecture).

The usability requirements are as follows. We can’t assume that our users have much experience with computers in general, nor PDAs in particular. Therefore, the interface must be intuitive and easy to learn. In addition, since the action in a basketball game is quite fast-paced, the interface must minimize “clicks” or stylus hits. The interface for pre-game data entry (e.g., player names & numbers) does not have the high-productivity requirements that the actual statistical data collection for game-time.

The specific data collection items are as follows:

· Team name, opponent, date & location of game

· Coach’s name

· Player names, positions, and jersey numbers (up to 15 per team)

· Attempted / made field goals (2 point shots)

· Attempted / made 3-point shots

· Attempted / made free throws

· Personal Fouls (Qtr & time when fouled out, if applicable)

· Technical Fouls (with description of the situation)

· Turnovers

· Offensive / Defensive Rebounds

· Steals

· Subjective, game-summary comments (e.g., “player avoids going to his left”)

The first two items are on a “per team” basis. The remaining data items are collected for each player on the roster.

The software will generate a number of “on demand” statistics based on the above data. The statistics will include:

· Team & individual shooting percentages (all categories)

· Team fouls, turnovers, steals, & rebounds

· Final score

Sometime after the game’s conclusion, the system will provide the capability to dock the Palm to a workstation and transmit the statistics to our database. The database will keep track of an entire season’s worth of data and provide the capability to query or generate statistics.

The process for this project is as follows. Generate the Software Requirements Specification based on the criteria given here along with additional requirements that surface through informal discussion. Your SRS should include a prototype of your user interface along with descriptions of the functionality. Thus, the reader of your SRS should have a clear view of the externally observable operation of your software on the Palm computer. Once the SRS is finalized, we may develop a design document (later in the term). Finally, we may implement all or part of the system. As part of our implementation, we may develop and execute a comprehensive test plan as part of our overall Software Quality Assurance program.

Caveat: this document should not be considered a comprehensive and/or complete view of the requirements for this project. As a developer, you should expect change and/or revision to this content. New or clarified issues related to the requirements often occur through ongoing social interactions with the customer/user audience.

To guide you in producing your SRS, the following outline may be used/adapted:

Software Requirements Specification

(SRS) Project Outline

1. Title Page

2. Table of Contents

3. Introduction

3.1 Purpose: clearly state the purpose of the document.

3.2 Scope: describe the scope of the document, the product being specified, the extent the product is being specified (are there other specification documents?), etc.

3.3 Definitions, Abbreviations & Acronyms: list all terms in the user domain that require definition so that the requirements can be understood.

3.4 References: List all reference material necessary to fully understand the SRS, including anything necessary to understand the problem domain or technical requirements.

3.5 Overview: Overview the document, including any appendices; discuss methodologies and tools used to develop requirements; don't simply re-state the table of contents.

4. General Description

4.1 User Characteristics: Identify the characteristics of the expected users of the system; what will be their domain knowledge; what will be their computer knowledge

4.2 General Constraints: Identify any general hardware, software, or environmental constraints on the system that may affect the requirements.

4.3 General Assumptions and Dependencies: Identify any general assumptions or dependencies made to develop the requirements.

5. Functional Requirements

· List every functional requirement with a requirement name and number. For each requirement, specify:

· Description (general description of function)

· Input (list every data item required; use generic domain-oriented names, not variable names)

· Processing (specify precisely the processing requirements)

· Output (list the required data items; use generic names).

6. External Interface Requirements

Give complete descriptions of every interface, including files, other systems, and the user interface. Precisely define the interface. Your prototype and functional explanation of the interface go here.

7. Appendices – For example:

· Preliminary User Manual: Required if the user interfaces are not clearly defined in the external interface section or if a prototype has not been developed.

· Data Dictionary: A description of all data items specified in the functional specifications and the interface specifications.

· Requirements Definition: The initial problem statement. Also, include the list of questions that were prepared for the interviews with the client and the answers to those questions.

